What's New? Analysing Language-Specific Wikipedia Entity Contexts to Support Entity-Centric News Retrieval
نویسندگان
چکیده
Representation of influential entities, such as celebrities and multinational corporations on the web can vary across languages, reflecting language-specific entity aspects, as well as divergent views on these entities in different communities. An important source of multilingual background knowledge about influential entities is Wikipedia — an online community-created encyclopaedia — containing more than 280 language editions. Such language-specific information could be applied in entity-centric information retrieval applications, in which users utilise very simple queries, mostly just the entity names, for the relevant documents. In this article we focus on the problem of creating languagespecific entity contexts to support entity-centric, language-specific information retrieval applications. First, we discuss alternative ways such contexts can be built, including Graph-based and Article-based approaches. Second, we analyse the similarities and the differences in these contexts in a case study including 220 entities and five Wikipedia language editions. Third, we propose a context-based entity-centric information retrieval model that maps documents to aspect space, and apply languagespecific entity contexts to perform query expansion. Last, we perform a case study to demonstrate the impact of this model in a news retrieval application. Our study illustrates that the proposed model can effectively improve the recall of entity-centric information retrieval while keeping high precision, and provide language-specific results.
منابع مشابه
Analysing Entity Context in Multilingual Wikipedia to Support Entity-Centric Retrieval Applications
Representation of influential entities, such as famous people and multinational corporations, on the Web can vary across languages, reflecting language-specific entity aspects as well as divergent views on these entities in different communities. A systematic analysis of languagespecific entity contexts can provide a better overview of the existing aspects and support entity-centric retrieval a...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملEntity Linking to Wikipedia: Grounding entity mentions in natural language text using thematic context distance and collective search
This thesis proposes new methods for entity linking in natural language text that assigns entity mentions in unstructured natural language text to the semi-structured encyclopedia Wikipedia. Doing so, entity linking grounds a mention to an encyclopedic entry in Wikipedia and embeds it into this Linked-Open-Data hub. This enables a higher level view on single documents, provides hints for furthe...
متن کاملNamed entity network based on wikipedia
Named Entities (NEs) play an important role in many natural language and speech processing tasks. A resource that identifies relations between NEs could potentially be very useful. We present such automatically generated knowledge resource from Wikipedia, Named Entity Network (NE-NET), that provides a list of related Named Entities (NEs) and the degree of relation for any given NE. Unlike some ...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trans. Computational Collective Intelligence
دوره 26 شماره
صفحات -
تاریخ انتشار 2017